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Large Energy Behavior of the Velocity Distribution 
for the Hard-Sphere Gas 
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The initial-value problem for the Boltzmann-Lorentz equation for hard spheres 
at zero temperature is shown to be ill defined, the general solution depending on 
an arbitrary function. The uniqueness of the solution can be obtained by 
imposing the conservation of the number of particles (Carleman's type of 
condition does not suffice). The linearized Boltzmann equation for hard spheres 
is then analyzed, as it occurs in Enskog's method for calculating transport 
coefficients. It is demonstrated that in the case of viscosity and diffusion it is 
necessary to add supplementary conditions to obtain the uniqueness of the 
solution. The nonuniform character of Enskog's expansion and violation of 
positivity in the large velocity region are exhibited. 

KEY WORDS: Hard-sphere gas; Boltzmann equation; Boltzmann-Lorentz 
equation; Chapman-Enskog developments. 

1. INTRODUCTION 

In this paper, we study some questions related to the kinetic theory of the 
hard-sphere gas. 

There has been recently much interest in exact solutions in kinetic 
theory. ~1) Most efforts have been directed toward solutions for the space- 
independent problem. 3 These are rather exceptional nonequilibrium situa- 
tions, as in gases typical nonequilibrium processes are basically space 
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3 Nevertheless Bobylev (2) has already pointed out that once a solution of the nonlinear kinetic 
model is known, a centrosymmetric inhomogeneous solution can be constructed by the 
method of Nikolski'i. 
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dependent--one may cite (among others) plane shock waves [a still formi- 
dable problem of kinetic theory at nonvanishing and positive (M - 1), M 
Mach number], Couette flows, heat conduction around some heated or 
cooled bodies, and so on. In these inhomogeneous situations the Chapman- 
Enskog theory yields a method for "solving" the kinetic problem in the 
limit where the macroscopic quantities have small variations on distances 
of the order of the mean free path. 

The nature of the approximation involved by the Chapman-Enskog 
theory is largely unknown, with the noticeable exception of the perfect 
Lorentz gas with fixed hard-sphere scatterers. (3) However, none of the 
problems considered in the present article appear in this model. Actually, 
the particle velocity has a constant modulus therein, so that no trouble may 
come from the large velocity region. And our analysis shows that it is 
precisely at large energies that restrictions must be imposed on distribution 
functions in order to make the method of Enskog's expansion well defined. 

Indeed, in the Chapman-Enskog theory the computation of transPort 
coefficients for gases requires the solution of linear integral equations. In 
Section 2 we show that the uniqueness of solution of these equations poses 
rather subtle problems because of the existence of slowly (powerlike) 
decaying solutions at large velocities. 

To give an idea of these difficulties we consider in detail in the 
forthcoming part of this introduction the diffusion at zero temperature 
within the Boltzmann-Lorentz theory, which presents a simple evolution 
problem with a nonunique solution for Cauchy data. To introduce this 
question we give first the equations of Boltzmann and Boltzmann and 
Lorentz for hard spheres. 

The full nonlinear Boltzmann equation for hard spheres is 

~ f f av,lv- v,I (-D, 
V+Vl 

( "-'" / 1 x f  r , - -~---  + 2' ~,t . - f ( r ,  vj, t)f(r,v,t)  

(1.1) 

where f(r, v, t) is the time-dependent density in the position-velocity space 
(r, v), o is the sphere diameter, and ~ a vector running freely on a unit 
sphere. 
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This equation has as steady uniform solution the equilibrium Maxwell 
distribution 

feq(v)= n (_ ~ m  )'Q/2exp~[ _ ~mv2 t] (1.2) 

where v --- Iv I, n is the number  density of the spheres, m their mass, T is the 
temperature, and k is the Boltzmann constant. 

We shall be mainly concerned with the linearized Boltzmann equation, 
since this is what is needed for computing transport coefficients. Let 
8f = ( f  - feq) be a small deviation o f f  near its equilibrium form as given by 
Eq. (1.2). Let us put 

(  '"lj 
and introduce the dimensionless velocity 

Expanding now the right-hand side of (1.1) around fcq to first order in df, 
one gets the linearized collision term in the form 

no2(2~rkT) '/2 feq(v) [JB~b] ( e ) 

where jB is the linear integral operator defined with the dimensionless 
quantities as 

1-L f an f ac~e-41c-e,r [ J ~ ] ( O  = 4,~ 

[(c+c, ,c-~,l) (c+~, ,c-~,,~) 
x ~ - - T - + - - - 5 - - - , ~  + ~  2 2 

- g,(c,) - ~b(c)] (1.3) 

Hilbert (4'5) found a simpler expression for J~  by performing the ~ integral 
in (1.3) 

[d ' t ) ] (c )  -- 1 ; dc,e-.~K.(c.ct)~(cO_[l + ( 2 c +  l )I(c)]e-C~(c) 
(l.4a) 

where 

( ' c X c " 2 )  , c - c , ,  (1.4b) 2 exp -- - 
Ka(C,C, ) -  ]C__ C]l IC Cl[ 2 
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and where 

- x  2 I (c)  = e c2 Cdxe , c = [e I (l.4c) 

Consider now the Boltzmann-Lorentz kinetic theory describing the 
diffusion of dilute tagged hard spheres in a gas of mechanically identical 
particles at equilibrium. Let f,(r,v, t) be the density of these tagged hard 
spheres. Its evolution obeys the equation 

CBLf~](r,v,t) (1.5a) ( ~  + v" ~, )/,(,,v,,)--I 

where 

G 2 
[ o = f < i v -  ,,i 

v+v~ { v - v d  v+v~ 

--fs(r, v,/)feq(vl) } (1 ~5b~ 

The notations being the same as in Eqs. (1.1) and (1.2). 
The linear operator C BL can be put in the Hilbert form. For that 

purpose let us introduce the function X by 

/ m ,3/2 [ my2 )[1 + X(e)] f , ( v ) = n s ( ~ )  e x p , -  2 ~  

with n s being the tagged spheres number density, and c = v ( m / 2 k T )  t/2, so 
that 

[ C BLfs ] (V) = Go2(2~rkT/m) '/2ffq(v)[J BLx] (s 
where 

[JBLx](c) = -~ / de,e-d'KBL(e, el)X(e,)-[I + (2c+ ~ )l(c)]e-dx(e) 
(1.6a) 

and 

K B L ( c ' c l )  = [ c -~1~ exp --c,i---- ~ (1.6b) 

I(c) being defined in (1.4c). 
The proof of existence of a unique solution at any time of either Eq. 

(1.1) or (1.5) is very difficult. A great achievement in this field is the theory 
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of Carleman (6) developed for the spatially homogeneous version of the 
Boltzmann equation. In what follows we shall illustrate on an example the 
difficulties involved in this sort of problem. 

Consider the Boltzmann-Lorentz  equation (1.5) when the function f~ 
does not depend on r. Let us assume furthermore that the temperature in 
feq is zero. Whence Eq. (1.5) takes the explicit form 

o = fd, ffdv,[v-v,I --0t/s(v, t) -~-n~ 

[ (v+v, Iv v,, ) (v+v, ,vyy~) 
• fs 2 ~ 2 , t  3 ~ + ~  

-- (~ (u (V,/)] (1.7) 

3 being the Dirac distribution. 
Consider now the evolution of the isotropic part offs, i.e., of 

= f 
A direct calculation gives from (1.7) 

3t ~ ( v , t )  = rare 2 d x x ~ ( x , t )  - vq)(v,t) (1.8) - -  

A similar equation was considered by Aizenman and Bak (7) in a problem 
of reacting polymers. The equation (1.8) can be solved explicitly. 

Put 

~0(v, t) = 1 exp( - mro2vt)F(v, mro2t) 

which defines a new function F. From Eq. (1.8) F is the solution of 

3"r F(v,'r) = 2 e ~  f ~  dx e-"*f ' (x;  ~ ") (l .9) 

where ~- is the dimensionless time ~- = mro2t. Differentiating Eq. (1.9) once 
with respect to v and twice with respect to ~', one gets 

3 3 24 ]~ = q" ]~ (1.10) 
O.c30v 3.r 3 

Equation (1.10) can be solved with respect to v 

03 F(v,'c) = a('r)e ~ 
3.c 3 

where a is an arbitrary function of ~'. Integrating now with respect to r and 
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choosing the integration constants in such a way that F satisfies Eq. (1.9), 
one obtains the general solution of Eq. (1.8) in the form 

1 ~2 ( e x p ( _ m r o 2 v t ) [ s 1 7 6 1 7 6 1 7 6 1 7 6  
~ ( v , t ) -  v ~ v  2 x 

r n ~  o 2t +Jo d'ra('r)exp(v'r)J) (1.1 1) 

Aizenman and Bak discuss a particular case of this solution corresponding 
to 

a(l") = �89 a > 0 

If one thinks to the origin of the problem [i.e., Eq. (1.8)], the form of 
the solution (1.11) is quite surprising, because the value of ~(v, t) at time t 
does not depend only on ~(v, 0), but also on an arbitrary function a. This is 
unusual, because the equation of evolution for ~ is first order in time. 

The fact that the evolution governed by Eq. (1.8) is ill-defined is a 
consequence of allowing a too large function space containing all the 
solutions (1.11). Here the supplementary condition to be imposed on 
~(v, t), making the solution unique, is the conservation of the number of 
particles, that is the norm f ~  dv v 2 ep(v, t) must be independent of t. 

This condition is not obvious, since it is usually claimed that the 
conservation of the number of particles is a consequence of the kinetic 
equation, rather than a supplementary condition. 

It is to be noted here that Cornille and Gervois (8) have already shown 
that conservation of energy was a restricting condition on isotropic homo- 
geneous solutions of the linearized Boltzmann equation, eliminating power- 
like ( ~ v  -6) decaying distributions. Hauge and Praestgard (9) have also 
considered the possibility of solutions of the linearized Boltzmann equation 
with algebraic tails. 

Indeed, the explicit solution (1.11) allows one to understand why the 
conservation law is not a simple consequence of the original equation (1.8). 
Take a(~')= 8(1"- ~0), where 8 is the Dirac distribution. This yields a 
solution of (1.8) of the form 

(t - to) 2 exp[ - nrro2v(t - to) ] (1.12) % ( v , t )  = (mro2)20(t - to) 

where 0 is the step function. The norm of this solution (as defined 
previously) is 

foo ~ dvv2q~(v, t) = O( t -- to) 
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It is obviously not a constant. The usual argument showing the 
conservation of the norm from (1.8) fails here because 

so that multiplying Eq. (1.8) by v 2 and integrating with respect to v one gets 
zero on the right-hand side, although the left-hand side is not the time 
derivative of the norm of 998, because the t derivation and the v integration 
do not commute for 99a. 

If one imposes that f~ dv v 299(v, t) is constant, then this implies et = 0, 
so that requiring that the number of particles is conserved at any time 
makes the solution of (1.8) unique. 

To show this let us notice first that 

fo~176 v 3v 23----~2 [e-~L~176176176 

fo 
Thus to keep constant the norm of 99, one must have from (1.11) 

Integrating by parts, one finds 

fo" ( ) 
dYlOt 'r I -- 0 V'r 

Thus a vanishes almost everywhere for positive times. 
It is of interest to notice that Carleman's type of condition does not 

imply the uniqueness of solution of (1.8). Roughly speaking in theorems of 
Carleman's type the uniqueness of solution is established for continuous 
velocity distributions decaying faster than some fixed power v -x, at large 
velocities ( v O  oo). In the present case this condition is equivalent to 
making the integral of the right-hand side of Eq. (1.8) vanish with the 
measure vEdv. One can verify that this is satisfied whenever 99 is continuous 
and decays faster than v-4  at v ~ oo. As shown before, this implies f~ dv v 2 
099/Ot =0 ,  but not (O/Ot)f~dvv299(v,t)=O. And the previous example 
shows that a solution of Carleman's type exists for (1.8) with a noncon- 
served norm. It would be of interest to understand why this Carleman type 
condition is not sufficient to guarantee the uniqueness for our particular 
model. 

In what follows, we shall be concerned with the solution of the 
Boltzmann equation in the form needed for the Enskog expansion. For that 
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purpose we shall give some details on this to make our point as clear as 
possible. 

In the Enskog expansion the Boltzmann equation is solved by itera- 
tion. 4 The expansion is made in the limit of small gradients of temperature 
T(r, t), velocity u(r, t), and density n(r, t). The lowest-order solution has the 
local equilibrium form 

m 3/2ex p _ 
f(~ v, t) -- n(r, t)  2kT(r,t) "2k-T-~,Q (1.13) 

As a consequence of the local conservation laws, the quantities n, u, T 
satisfy the Euler fluid equations at the lowest order in the gradients, and 
one has 

[ 1 2kT 1/2 
( - ~ + v ' 3 - - ~ ) f ' ~  ( C Z - 5 )  ~r 

+ 2C~ : VuS]f(~ (1.14) 

where C = (m/2kT)[v-  u(r,t)], C~ is the traceless tensor defined from 
CC as 

(TrCC) C~ = CC - 

being the unit tensor, and Vu s is the symmetric rate of strain tensor with 
Cartesian components 

%1 

The free streaming operator acting on the local equilibrium distribution, as 
given by (1.14), gives a source term for the first-order perturbation to f (0)  
This first-order perturbation reads 

f(,)  = f(0)+ 

where #J satisfies an integral equation wherein the inhomogeneous part is 
computed from the right-hand side of (1.14) 

m 
-~r + 2C~ : ~ (1.15) 

j 8  being the linear integral operator already introduced in (1.4a). 
The usual way 5 of solving this kind of integral equation is by means of 

spectral theory. (12) This is questionable (see Uhlenbeck and Ford (]3) and 

4 A good modern exposition of the Chapman-Enskog method can be found in Ref. 10. 
5 With the noticeable exception of Pekeris and co-workers. (SA l) 
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references given therein), as the recourse to spectral theory implies severe 
restriction on the function space. That is, integrals such as f dv f(0)~p2 must 
converge, although the square of a distribution function has no physical 
meaning, contrary to the squared modulus of solutions of wave equations 
in quantum mechanics. 

As we shall see in what follows the condition imposed to get a unique 
solution for (1.15) is of Carleman's type~ However, the exact situation is 
rather complicated. In the case of the heat conductivity term the algebraic 
decay of ~p at large velocities (in short-algebraic tail in ~b) is excluded by the 
integral equation itself, a fact which does not appear in the analysis of 
Pekeris and Alterman. (1~) But the situation is completely different for the 
shear viscosity contribution, and for the self-diffusion in the Boltzmann- 
Lorentz equation. The algebraic tails in the corresponding contributions to 
q~ and X must be eliminated by an extra assumption, that does not result 
from the kinetic equation itself or from Enskog's method. 

From the conceptual point of view this need of supplementary assump- 
tions is difficult to accept. As will appear in our analysis, the distribution 
functions with algebraic tails are solutions of the homogeneous part 
of (1.15) and these solutions cannot be eliminated by an Enskog condition 
(------- no contribution of f(~) to the hydrodynamic moments) when they 
depend on higher spherical harmonics of velocity as they do not contribute 
to the hydrodynamic moments. Whence it is possible that steady solutions 
of the (nonisotropic) Boltzmann equation exist with algebraic tails in higher 
spherical harmonics. This kind of solution could be obtained for instance in 
a perturbative approach. Indeed, this violates the H theorem. To reconcile 
the two points of view it is possible that the steady solutions of this kind 
have necessarily negative parts, so that the H theorem cannot be applied to 
them: it assumes that distribution functions are positive, and one has to 
take their logarithm. This view is reinforced by the fact that perturbations 
with algebraic tails heavily dominate the zeroth-order Maxwell-Boltzmann 
distribution at large velocities. As the sign of this perturbation is certainly 
not constant, owing to its angular dependence, there are regions in the 
velocity space wherein the total distribution is negative at large velocities. 

Nevertheless one must recognize, that, even if one eliminates algebraic 
tails in the solution of (1.15), the perturbation of the velocity distribution 
dominates at large velocities. This is to be shown in this paper, where we 
shall compute the exact large-energy behavior of the solution of (1.15). This 
shows that the Enskog expansion is not uniform, contrary to the assump- 
tion of Chapman and Cowling. (14) It remains thus to show that the 
Chapman-Enskog expansion, together with some assumptions eliminating 
algebraic tails, yields finally positive velocity distributions. This is presum- 
ably a difficult task. 
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2. CALCULATION OF TRANSPORT COEFFICIENTS: 
ANALYSIS OF ENSKOG'S METHOD 

2.1, Self-Diffusion 

The self-diffusion process can be analyzed by applying Enskog's 
method to the Boltzmann-Lorentz equation (1.5). The basic idea is again to 
assume that the velocity distribution of diffusing particles becomes rapidly 
thermalized by the host hard-sphere gas (after a time of the order of mean 
free time), whereas their number density n,(r, t) relaxes to equilibrium on a 
much longer time scale. Consequently, the zeroth-order approximation to 
the solution of (1.5) is written as 

n,(r,t)( m \3/2 / mv 2 f~(~ *,/) ) e x p , -  2 k r l  (2.1) 

where T is the temperature of the host fluid. The local equilibrium state f~o) 
is invariant under collisions and yields a vanishing current density 

j(~ t) = f dv vf~~ v, t) ~ 0 

The conservation of the number of particles implies that within this 
approximation the number density n s does not depend on time. The free 
streaming term in Eq. (1.5), calculated at local equilibrium (2.1), reduces 
thus to v. (8/ar)f~ ~ , and is to be balanced by the lowest-order effect of 
collisions involving the first Enskog correction f~l). The function f~l) 
satisfies the inhomogeneous equation 

v- ~ f~(~ = [ cBL]f,(')(V) (2.2) 

supplemented with the condition 

n} i)(r, t) = f d v  f~ l)(r, v, t) ~ 0 (2.3) 

Putting 

f,(') (v) = f,(~ ) 
with c = (m/2kT) l /2v ,  and using Eqs. (1.5b), (1.6) one finds 

1 e. 0 =~no2EJLBx](e ) (2.4) n, 

Equation (2.4) can be greatly simplified owing to the rotational invariance 
of the operator J LB. A convenient representation of X is 

nsx(e) = 1 | . -~r ns (2.5) 
(,/triO2) I/2 
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The correction ~(]) satisfies then the subsidiary condition (2.3), and Eq. 
(1.6a) together with the relation 

leads to an integral inhomogeneous equation for the scalar function | 

4 s  ~ax[ x](x 2 - 1)I (x) ]e -X: |  + 4[ c + (c 2 -  1)I(c)]  

• ~OOdxe_X2@(x)_[c 2 + (c + 2c3)I(c)]e_c:| c 3 (2.7) 

It will be convenient to define a new function E as 

E(c) = ~o~ dx e-X=6"O(x) (2.8) 

Taking the derivative with respect to c (hereafter denoted by a prime) of 
both sides of Eq. (2.7) one finds a second-order differential equation 

{[c  2 + (c + 2c3)I(c)]E'(c)} '  + 4c2[1 + 2cI(c)]E(c)  = 3c 2 (2.9) 

when c -+ 0 

I(c)  = c + {c 3 + O(c 5) 

so that the asymptotic form of (2.9) in this limit reads 

[2c2E'(c)] '+ 4c2E(c) = 3c 2 (2.10) 

with a general solution 

+ ( 1 / x ) [ a , c o s ( f 2 x ) +  azsin(v~x)] 
where a~, a 2 are constants. A direct calculation of the limit c-+ 0 of both 
sides of Eq. (2.7) shows that a I must vanish if | obtained from (2.8) is to 
satisfy the integral equation (2.7). The constant a 2 remains, however, 
arbitrary, which means that there exists a one-parameter family of solutions 
of Eq. (2.7), and thus of Enskog's equations (2.2) and (2.3). In order to 
further clarify this unsatisfactory situation let us turn now to the asymptotic 
analysis of Eq. (2.9) for c --> ~ .  As 

~..  e c2 I(c)  
c--, ~ 2 

the large velocity behavior of E(c) is governed by the equation 

'  6c2 (2.11) {(c + 2c3)e~E'(c)} + 8c3eC2E(c) = v~ 
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whose general solution has the asymptotic form 

2(-~-3 cl e-C 2 + ~__~ [al  + 1  a2e-: ] (2.12) 

where a I, a 2 are constants. The first term corresponds to a solution of the 
inhomogeneous equation (2.11), whereas the remaining two terms describe 
the large c asymptotics of the solutions of the homogeneous equations 

[c 2 +(c+ 2c3)I(c)ED(c)] ' + 4 [ c  2 + 2c3I(c)]Eo(c)=O (2.13) 

The condition at c = 0 determines solutions of (2.13) up to a multipli- 
cative constant, fixing the ratio al/a 2. We have analyzed Eq. (2.13) by a 
method of numerical integration establishing the following result: 

if E0(0 ) = 1, then Eo(C)c~.,(1.55 +_ 0.01)c -2 

Hence, any nonzero solution of Eq. (2.13), regular at c = 0, has the 
asymptotic behavior 

Eo(c)c~-ooalc-2 with a I v a 0 

[see Eq. (2.12)]. This means that the large velocity behavior of the first 
Enskog correction f~ (1) is in general given by 

1 ( 2at '[,. Ons) f(1)~_~5 ~ J[v'--~r (2.14) 

Such a slow, powerlike decay is incompatible with the existence of a finite 
current density of diffusing particles. 

It is only when 

IJ(l)[ = I f  dv vf, I < ~ (2.15) 

that one finds j(u = DOns~Or) ' with a finite self-diffusion coefficient 

D 4 ( - ~  "1 /2"~  2 = ) Jo dcc3e-~| 3no 2 
It is, however, to be stressed that the condition (2.15) must be added to 
Enskog's equations (2.2) and (2.3) in order to make them represent a 
well-defined problem (i.e., leading to a unique solution for f ~l)). Of course, 
one could think of more restrictive requirements, as for example those used 
in the spectral theory approach. There is thus an element of arbitrariness in 
the original formulation of the theory. Condition (2.15) is of Carleman's 
type, as it is equivalent to assuming that the distribution f~o decays for 
large velocities faster than v -4. It represents the existence of the self- 
diffusion coefficient D (and the uniqueness of the solution to Enskog's 
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equation). One could say that in order to make Enskog's method well 
defined the existence of transport coefficients must be assumed. 

When a I = 0, Eq. (2.12) yields the exact asymptotic behavior of E(c) 
at c ~ o o  

E(c)~ 3 1 e-~ ~ (2.16) 
c 

The corresponding large velocity form off,(i) reads 

fs(1) (V) .~-oo 3feq(v)(''~rns ) ~r/2a 2 

For sufficiently weak gradients of density f(O is thus small (in the large 
velocity region) compared to the local equilibrium term f(0). We shall show 
in the next section that this is no longer the case when Enskog's expansion 
is applied to other transport processes. 

2.2. Heat Conductivity 

The internal energy flow in a gas can be characterized by the heat 
current density 

q(r, t ) =  f dv[v - u(r, t) ] 2 Iv - u(r, ,)]2f(r, v, ,) 

According to Enskog's expansion the lowest-order contribution comes here 
from the first correction f(J), as the local equilibrium distribution f(0) does 
not contribute to q. The heat conduction term in f(O is conveniently 
written as 

f(l)  = f(0)~hc (2.17) C 

where 

+,c (c ) -  ( no2),/2 

[see Eq. (1.15)]. The corresponding heat current obeys Fourier's law 

a r(r, 0 
q( 0(r, t) = ~ Or 

with the heat conductivity coefficient given by 

4k ( 2kT)'/2 foo ~ = , decSe-d~(c) 
3~ro 2 Y 

It is convenient to define a new function B as 

B(c) = ~  dxe-X2~(x) 

(2.18) 

(2.19) 



248 Plaseckl and Pomeau 

Inserting then Eq. (2.17) into Eq. (t.15) and using formula (1.4) together 
with the relation 

f d~l(d" ~1)KB (C, e,) 

c>c, gc]  15 e 2 c ~1 + 1 -  c~ 

one obtains an integral equation of the form 

[c 2 + (c 4- 2c3)I(c)]B'(c) 4- [ 8 c -  ~ c  5 4- 8(c 2 -  1)I(c)]B(c) 

- fo c d x [ 8 x  - ~ x  5 + 8(x 2 -  l)Z(x)]B'(x) 

- < f o  - : -  < 
(2.20) 

The possibility of deriving from (2.20) a fourth-order differential equation 
for function B has been exploited by a number of authors. (ml:2) We shall 
show later on that one can do even better, reducing the problem to solving 
a second-order equation. However, it will be sufficient for the present 
purposes to consider simply the relation obtained by taking the first 
derivative of Eq. (2.20) with respect to c. One gets then 

( [ c  2 + (c + 2c3)I(c)]B'(C)}' + [ -  4c4 + 8c 2 + 16c3I(c)]B(c) 

- w dx x3B'(x) - 4c2~ ~ ax x2B'(x) = 5(c 4 - 3c2) (2.21) 

Equations (2.20) and (2.21) should be supplemented with Enskog's condi- 
tion (no contribution from f (~) to the mean velocity) 

fn ~ de c3B'( c) = 0 (2.22) 

Indeed, one can verify, that the function of the form ale- : ,  where a~ is any 
constant, is a solution of the homogeneous equation associated with (2.20). 
Enskog's condition serves thus for fixing the constant a I in the solution of 
the inhomogeneous integral equation (2.20). 

Equations (2.21) and (2.22) imply that the asymptotic behavior of B(c) 
for c ~ ao is described by the equation 

[c3edB'(c)]' + 8 c 3 e C 2 B ( c ) = ( 5 / ~ - ~ ) ( c 4 - 3 c 2 )  (2.23) 

whose general solution is 

( : S.x ) 5 c e - C  2 + a l e  + c a c e x2 

2x/~ 
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where ai, a2 are constants. When a 2 :/: O, 

a2 B ( C ) c ~  ~ (2.24) 

which leads to a slow, powerlike decay of the first Enskog correction 
according to the formula 

1 8ka2 (v .  3T 
v 5 m . : . :  - J 

The situation seems thus to be analogous to that encountered in the study 
of self-diffusion. However, the structure of the inhomogeneous term in Eq. 
(2.21) rules out a 2 :#0. This fact, which may appear as a miraculous 
coincidence, can be demonstrated owing to the relation 

fo~dC(c 4 - ~c2)e -c~= 0 (2.25) 

This "orthogonality" property can be used in a straightforward way to 
evaluate a 2. Indeed, one can check that the left-hand side of Eq. (2.21), 

- -  C2 when multiplied by e , can be written as a derivative L'(c) with 

= ( [ c Z + ( c +  L(c) e -d  2c3)I(c)]B'(c) 

4 fo c dx x3a'(x) +[ 3 + 4 c " l ( c ) ] B ( c )  + 

+ 2[c  - / ( c ) ] ~  ~176 dxx2B'(x)} (2.26) 

Equation (2.25) implies the relation 

lim L(c)= l imL(c)  (2.27) 
c ---> o o  c - - > O  

and the asymptotic behavior (2.24) yields a simple result 

lim L(c) = lim 4c4e-C21(c)B(c) = 2(~-a 2 (2.28) 
C - - > ~  \ ~ C ---> OO 

In order to calculate the right-hand side of (2.27) one has to examine the 
small-c behavior of B(c). When c ~ 0, Eq. (2.20) takes the asymptotic form 

-4fooCdXx3B'(x) + 4c3B(c) + 3c2B'(c) = (2a - ~ ) c  3 (2.29) 

where a = f~  dx x2B'(x), which gives a second-order differential equation 

[ c2B'(c)]' + 4c2B(c) = (2a - -~)c 2 

with a general solution 

I ' '  ~ 1 ] - - ~  + 2 + -(alc~ + ~2sin2c) 
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The behavior B ( c ) ~ e q / c  being incompatible with Eq. (2.29) we 
conclude that B(e) is regular at the origin. Hence, limc_+0L(c)= 0, and 
Eqs. (2.27) and (2.28) imply that a 2 --0. This permits us to establish the 
exact velocity behavior of B as 

5 ce-C 2 (2.30) 
B(c)c   2,/7 

Enskog's correction fh(2 ) is correspondingly given by 

fh(l)tv., 5m v2f(O)(v)@. OT (2.31) 
c t )v~-~ 2mro2kT2 -~r j 

There is thus no need here to introduce extra conditions to guarantee the 
uniqueness of the solution for f~(~). 

Enskog's method in the case of heat conductivity represents a well- 
defined problem. However, a new difficulty appears. 

In the presence of an arbitrary small but fixed gradient of the tempera- 
ture field r  dominates over f(0) for sufficiently big velocities (unless ./he 

v. 8T/~r = 0). It follows that Enskog's representation of the solution to 
Boltzmann's equation as f ~ f ( o )  + f (o ,  violates the positivity requirement 
f > 0, because f(O takes both negative and positive values (depending on 
the sign of the scalar product v �9 8 T/Sr). 

It is very hard to see how one could get rid of this unsatisfactory 
feature of Enskog's method. It might happen that the situation is different 
for smooth pair potentials with a divergent total cross section. This is, 
however, an open question. 

Let us finally notice that the possibility of writing Eq. (2.21) in the 
form 

L'(c) = 5 ( c  4 - ~c2)e -d  (2.32) 

permits us to reduce the problem of determining the function B to solving a 
second-order differential equation. Indeed, using the regularity of B at the 
origin one finds from (2.32), 

L(e) = - ~c3e -d  

which is equivalent to 

[ + - 8s 
+ 8[ I ( c ) -  c] s  dx x B ( x ) =  - 5 c  3 (2.33) 

Defining function I" by 

F(c) = B(c) - 2~ ~ dxxB(x)  (2.34) 
J r  
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one finds from (2.33) (by taking the derivative with respect to c) 

[ cI'(e)F'(c)]' - 8cI(e)F(c) = - 15c 2 (2.35) 

Once the second-order equation (2.35) is solved one obtains the general 
form of B(c) from the formula 

B(c) = e- :  foC axe:F'(x ) + B(0)e -C2 (2.36) 

This remark may be of some use for the numerical study of Eq. (2.20), 
based up to now on the fourth-order differential equation, found first by 
Pekeris and Alterman. (tl) 

2.3. Shear Viscosity 

The momentum current density in a fluid is described by the pressure 
tensor 

P(r, t )=  mf dv I v  - u(r, t)] Iv - u(r, t ) ] f i r ,  v,t) 

The local equilibrium contribution to P follows the perfect gas law 

p(0) = nkT~, ~ = unit tensor 

The dependence of P on the gradients of the velocity field is deter- 
mined (to the lowest order) by the first correction f(J). Taking into account 
the structure of Eq. (1.15) it is convenient to write the viscous term in f<l) 
a s  

fv(. I) = f(~ ISC 

with 

1 
~Jvis(C) = no2f~ ( m--m--2kT ]'ll/2~(c'l(e~ "" : Vns) (2.37) 

The contribution to the pressure tensor corresponding to f~ils~ has the form 
predicted by Newton's law 

P(~) = - 2#V~ 

where V~ is the traceless rate of strain tensor and the shear viscosity 
coefficient/~ is given by 

4(2mKT) I/2 
foo ~176 dc c6e - ~2~(c) (2.38) 

/z - 15~ro2 

Inserting formula (2.37) into Eq. (1.15), and using Eq. (1.4), one finds an 
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inhomogeneous integral equation for the scalar function 

f _ 2 A 1 d e ~ c ~ e  c ' e 2 ( c  A - - . ~ ) t :  ( e , c , ) ~ ( c  0 

+ [c 2 + (c + 2c3)1(c)]e-~2~(c) = 2c 2 (2.39) 

where P20 ' )= �89 3~'2- 1) is the second Legendre polynomial. The formula 

l~r f d~'P2(d"~")K~(e'c')~>--e, (ec6,) ~ [ c ' ( -c2 + c 2 - 6 )  

4 c~' 4 ~ 
35 c 3 15 c 

=--- k(c, c,) (2.40) 

permits to transform further Eq. (2.39). One gets 

- (x,c)e- ~(~) ~ f ~  dx x4k ; - fo~ dXx4k(c,x)e - ~(x) 

+ [c 2 + (c + 2c3)]1(c)e-~(c) = 2c 2 (2.41) 

Defining functions 

a(c)  - - ~ e  z + 6c 9-- 36c + (12c 4 -- 30c z + 36)I(c) 

o(e) = ~ c  5 -  6c + ( - 4 e  2 + 6)I(c)  

one can then rewrite (2.41) as 

- [ e 2 + (c + 2c3)l(c)]cSe-d~(c) = - 2c 5 (2.42) 

When c---> 0, Eq. (2.42) can be asymptotically replaced by 

4fo~dxz~-~g(x  ) - 5~e-~  = ( - 5  - 4~, + 2"~)d (2.43) 

where 

=ff~ i =  1,3 

Equation (2.43) implies that ~ (c) is regular at c = 0, and satisfies then the 
relation 

9(0) = 1 + ~ ~, - ~ ~3 (2.44) 

This conclusion is consistent with the assumption/x~, ~3 < ~ ,  made when 



Large Energy Behavior of the Velocity Distribution for the Hard-Sphere Gas 253 

writing Eq. (2.43). [One can show by a more thorough analysis that ~ must 
be regular at c = 0 if it is to satisfy Eq. (2.42).] 

It is convenient here to introduce a new function H related to ~ by 

H(c) = s d x x L ~  dy ye-Y=~(y) (2.45) 

so that 

cn ' (c)  - n '(c)  = c3e-C~(c) 

From Eq. (2.42) one obtains a fourth-order differential equation for H, 
which can be written in a compact form as 

[cH'(c + H ' ( c ) ] "  + {[16cZI'(c)-(1/c)(cI"(c)) ']H'(c)) ' 

+ 1 6 [ - c  2 + cI"(c)]H(c) = 60c 2 (2.46) 

Let us study the asymptotic form of (2.46) when c ~ oo. Using the formula 

~__ e c2 I(c) 
C--~ O0 2 

we find the equation 

[c3eC~H"(c)]" +6[c3e~H'(c)]' + 16c3edH(c) - 30c2 (2.47) 

Supposing that 

H(c)c~  c"e-C2 (2.48) 

one verifies, that the asymptotic behavior reproducing the inhomogeneity in 
Eq. (2.47) is given by 

- -  C 2 H ( c ) -  15 1 e (2.49) 
14vr~ - c 

In principle, any solution of the homogeneou] equations associated with 
(2.47) can be added to (2.49). Hypothesis (2.48) leads to the dominant term 
in the left-hand side of Eq. (2.47) proportional to 

( a  2 + 6a + 12)c a+3 

The coefficient of c a+3 vanishes for a = - 3  + i(-5, leading to the asymp- 
totic behavior 

(1/c3)[a,cos(C31ogc) + a2sin(~/3-1ogc)]e - d  (2.50) 

w h e r e  a l ,  a 2 are constants. 
Assuming then that H(c) N c b, c ~  oo, one obtains the dominant 

contribution to the left-hand side of (2.47) proportional to 

(b  2 at- 2b + 4)cb+3e c2 
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giving rise to the remaining two possibilities, corresponding to b - -  

- 1 _+ i,/J-. We thus arrive at the formula 

H(c)c~  ~ 1____.~5 1 e + e-C2+ - -  cos(,~- log c) 
14,~- c c 

+ (  a2c3 e -C2 + ~)s in(~J- logc)  (2.51) 

Let us now find out whether we have enough conditions to fix the 
constants at,81,a2,82. Now, H (as 9) must be regular at the origin, and 
equation (2.44) is equivalent to 

H ( O ) = ~ _ H , , ( O ) _  5 ~,> ~ H  (0) (2.52) 

Moreover, by a straightforward calculation one verifies that if the function 
9, calculated form (2.45), is to satisfy the integral equation (2.42) then 
H'(O)---H'"(O) = 0. Hence, if H(0) and H ' (0)  were known, one could 
construct a Taylor series for H(c) near c = 0. This means that we need two 
complementary conditions to fix the solution H(c). However, Enskog's 
method does not yield such conditions, and thus it represents for viscous 
phenomena an ill-defined problem. The situation is quite analogous here to 
the one encountered in the self-diffusion problem. Again, assuming the 
existence of the transport coefficient (viscosity /~) determines H(c) in a 
unique way, yielding two supplementary conditions: 

81= 8 2 = 0  

which eliminate distributions whose slow decay at infinity is incompatible 
with the convergence of the integral in (2.38). The precise large-velocity 
behavior of H(c) is then readily deduced from (2.51) to be that given by 
Eq. (2.49). The corresponding formula for Enskog's correction fv~s)c reads 

(0 15m vf(~176 : Vu') 
f$isc(V) v ~-'oo 71ro2kTn 

Similarly to the case of thermal conductivity the above asymptotic form 
r shows the nonuniform character of Enskog's expansion and violation 
of the positivity requirement in the large-velocity region. 

3. C O N C L U S I O N  

We have studied the linearized Boltzmann kinetic equation for hard 
spheres, as it has to be solved for computing transport coefficients. We 
have shown that this gives generally ill-defined problems, with the notice- 
able exception of the case of heat conductivity. This kind of problem does 
not seem to have been considered before. We have mainly used the 
differential equations equivalent to the linearized Boltzmann equation, as 
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did Pekeris and  co-workers. The possibility of deriving these differential 
equations was already remarked by Bol tzmann himself. As he did not  have 
at his disposal the Hilbert  representation, his derivation has been a fantastic 
" tour  de force." 

We have shown that, by  adding  some extra assumptions,  it is possible 
to get well-defined values for the transport  coefficients. These assumptions 
are needed to eliminate algebraic tails in the velocity space. One would 
prefer to deduce the absence of such algebraic tails f rom the kinetic theory 
itself. We suggested in the In t roduct ion  that this could result f rom the 
requirement  of positiveness for the distribution function. However,  this is 
certainly not  easy to fulfill. In  part icular  the per turbat ion expansion in- 
volved in C h a p m a n - E n s k o g  theory does in general introduce velocity 
distribution negative somewhere in the velocity space, where the algebraic 
tails are dominant .  Whence  it seems impor tant  to know whether, in 
strongly nonequil ibr ium situations, as in strong shock wave for instance, 
such algebraic tails could be excited or not. One cannot  also a priori 
exclude their appearance  in the presence of external fields. 

A C K N O W L E D G M E N T  

Yves Pomeau  is indebted to Eivind H. Hauge  for i l luminating discus- 
sions during his stay at Trondheim.  

R E F E R E N C E S  

1. M. H. Ernst, Phys. Rep., to appear and ref. quoted therein. 
2. A. N. Bobylev, Soy. Phys. Dokl. 20:820 (1976); 21:632 (1976). 
3. E. H. Hauge, Phys. Fluids 13:1201 (1970); Y. Pomeau, J. Math. Phys. 12:2286 (1971). 
4. D. Hilbert, Math. Ann. 72:562 (1912), translated in Kinetic Theory 3, S. G. Brush (ed.) 

(Oxford, Pergamon Press, 1972). 
5. C. L. Pekeris, Proc. Natl. Acad. Sci. U.S. 41:661 (1955). 
6. T. Carleman, Acta Math. 60:91 (1933); and Problemes mathematiques de la theorie 

cinetique des gaz (Almqvist et Wiskell, Uppsala, 1957); L. Arkeryd, Arch. Rat. Mech. Anal. 
45:1 (1972); 45:17 (1972). 

7. M. Aizenman and T. A. Bah, Commun. Math. Phys. 65:203 (1979). 
8. H. Cornille and A. Gervois, C. R. Acad. Sci. Paris 291:101 (1980). 
9. E. H. Hauge and E. Praestgard, J. Star. Phys. 24:21 (1981). 

10. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (J. Wiley & Sons, New 
York, 1975), Chaps. 12 and 13. 

l 1. C. L. Pekeris and Z. Alterman, Proc. Natl. Acad. Sci. (U.S.A.)43:998 (1957). 
12. C. C. Yan, Phys. Fluids 12:2306 (1969); 0. O. Jenssen, Phys. Norvegica 6:179 (1972), and 

reference therein. 
13. G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical Mechanics (American Math. Soc., 

Providence, Rhode Island, 1963). 
14. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases 

(Cambridge University Press, 1939), Chap. 7, p. 107. 


